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Short Papers

Focused Electromagnetic Heating of Muscle Tissue
POVL RASKMARK AND J. BACH ANDERSEN

Abstract —A cylinder of muscle tissue may be heated at depth by
applying an electric field to a circumferential. gap in -a. metallic cylinder
surrounding the tissue. Experiments at 150 MHz on a 10-cm-diameter
cylinder verify the theoretical calculations and show a well-defined focus on
the axis. :

I. INTRODUCTION

In cancer treatment, the use of elevated temperatures in tumors
(hyperthermia) has now been established as a very promising
supplement to other therapies. For the proper selective treatment
of the tumor cells, it is important that the healthy tissue not be
overheated, so technical means for ¢reating a hot spot or focus in
the tissue are of interest. There is especially a need for heating
-deep-seated tumors, since superficial -ones may be treated by a
variety of techniques. In muscle tissuc or other “wet” tissues,
focusing at depth is made difficult by the fact that the attenua-
tion in the medium is large; penetration depths and wavelengths
are comparable. Focused heating has been considered at micro-
wave frequencies [1], {2], but here the concern is with lower
frequencies, around 100 MHz, in order to explore.the potentiali-
ties of deep penetration. Previously [3]; it has been shown theoret-
ically in'a two-dimensional case that a symmetric distribution of
sources around the axis of cylinder may create a maximum of
power at the center. This short paper reports on expetimental and
theoretical results for an especially 51mp1e apphcator around a

cylindrical structure.

II. A COAXIAL APPLICATOR

The applicator shown in Fig. 1 is applied to a cylindrical shape
of tissue; or tissue supplemented with water to form the shape of
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Fig. 1. Cylindrical applicator and phantom. The RF voltage is distributed
around the gap. The thermistor probe is shown in the gap center (z = 0).
Difference in radius 4 and B correspond to insulator thickness.

a cylinder. The lossy medium is surrounded by a shell of low-1oss
dielectric of thickness d = (b — a), and this again is surrounded
by a metal cylinder with a circumferential gap of w1dth w. Thus;
a gap-excited coax transmission line with the tissue as-the center
conductor is provided. This configuration has been analyzed
numerically by assuming a field distribution in the gap between
the two metal edges and the following conclusion may be drawn
from the simulation: power distribution is sensitive to the
frequency, gap width w, and insulator spacing d.
First, the frequency is chosen such that the radius of the lossy

medium approximately equals the focal spot size in a lossy‘
medlum [6] Oars Wherc
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This choice of frequency may lead to a local maximum of power
on the.axis of the cylinder if reactive nearfields are sufficiently

small. In simple words, the frequency is chosen so low that the
exponential decay into the tissue is avoided, and so high that
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Fig. 2. Plot of relative power distribution 1 muscle cylinder excited by
quasistatic field distribution in gap in metallic cylinder. A layer of lossless
dielectric separates the tissue from the metal. The contour lines correspond
to P=0.8,0.6,04, and 0.2.

constructive interference between the waves creates a local maxi-
mum.

Near the metallic edges the fields are singular, (E~ (1—
(2z/w)*) Y2 so if b=a (d = 0), excessive heating takes place
near the edges. As d is increased, this effect disappears, and the
power distribution becomes insensitive to the precise aperture
fields. If d becomes very large, the usual coax-line mode becomes
dominant with low attenuation in the axial direction, and the
axial confinement of the hot spot is lost. Thus, there is an
optimum value for d, which in the 100-MHz range is of the order
a few millimeters. The edge fields are avoided, and the shielding
of the tissue outside the volume of interest is effective.

The width of the gap is important in the sense that too narrow
a gap leads to excessive amounts of nearfields destroying the
focus obtained with the other parameters. Numerical simulations
show that w should be larger than approximately a quarter of a
wavelength in the lossy medium.

Fig. 2 shows the ‘theoretical result for a muscle cylinder of
10-cm-diameter and a complex permittivity of €= 70~ j90. The
lossless dielectric has a thickness of only 2 mm, which seems to
be sufficient for suppression of the singular edge fields. The
aperture has a width of 6 cm, and there is a clearly developed
focus which is in marked contrast to the standard coil excitation
of a cylinder with a zero on the axis.

III. EXPERIMENTAL RESULTS

Experiments were performed in phantom material simulating
muscle tissue. The diameter was 10 cm and the length about
40 cm. The lossy material was surrounded by a thin shell (2 mm)
of low-loss dielectric, € ~ 2.5, which had a close fit to the metallic
shield. The gap may be excited in many ways, but for this
experiment a balanced RF voltage was applied between the two
sleeves four points around the circumference. Lagendijk {4] has
used an additional outer conductor for axially symmetric excita-
tion of the gap. The power distribution was determined by
measuring the temperature gradients in time after the application
of power. A probe of eight thermistors was placed in a radial
direction at three different axial positions (see Fig. 1). For a
discussion of the temperature measurement problems, the reader
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Fig. 3. Relative power distribution as in Fig. 2 for different z-values. z =3
cm corresponds to the position of the edge theoretical results (as in
Fig 2), ----- experimental results.

is referred to [5]. Results of the measurements are shown in Fig.
3, together with theoretical results. Although there are some
discrepancies, a well-defined focus is clearly seen. The results
obtained cannot be directly scaled to other dimensions and other
frequencies since the material constants of tissue are frequency
dependent, but the general philosophy of a gap-excited cylinder is
valid.
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On The Nonthermal Microwave Response of
Drosophila Melanogaster

H. AICHMANN, G. NIMTZ, L. DENNHOFER, AND A.-H.
FRUCHT

Abstract —The fertility of microwave-irradiated fruit flies was investi-
gated in an experiment conducted at 40 GHz and at a low power level to
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